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ABSTRACT

A small eccentricity analysis was performed for a bearing with two feeding planes,
each of which is assumed to be a line source. Numerical results were obtained for a
range of bearing number, pressure ratio, feeding parameter, and orifice recess volume.
A digital computer program was written to obtain these results and is included. Steady-
state load and attitude angle were obtained, as well as stability data. Stability decreased
markedly with increasing recess volume; moreover, for large recess volume and low
bearing number, an increase in pressure ratio decreased stability. There was no corre-
lation between stability and steady-state attitude angle for any of the cases studied. Fair
agreement was obtained with available experimental data.
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STABILITY ANALYSIS FOR UNLOADED EXTERNALLY PRESSURIZED
GAS-LUBRICATED BEARINGS WITH JOURNAL ROTATION

by David P. Fleming, Robert E. Cunningham, and William J. Anderson

Lewis Research Center

SUMMARY

A small eccentricity analysis was performed to predict the stability of an externally
pressurized gas-lubricated journal bearing with two feeding planes, each of which is as-
sumed to be a line source. Numerical results were obtained for a representative range
of bearing number, pressure ratio, feeding parameter, and orifice recess volume. These
results were obtained by using a digital computer program which is presented in an ap-
pendix. Steady-state load and attitude angle were obtained, as well as stability data.
Stability decreased markedly with increasing recess volume; moreover, for large recess
volume and low bearing number, an increase in pressure ratio decreased stability. There
was no correlation between stability and steady-state attitude angle for any of the cases
studied. Fair agreement was obtained with available experimental data.

INTRODUCTION

Self-excited instability is one of the severest problems encountered in operating gas-
lubricated journal bearings. At high speeds and low loads, the journal may precess about
its steady-state position at a frequency which, for a self-acting bearing, is usually about
one-half of the frequency of rotation. Hence, this phenomenon has become known as half-
frequency whirl. In bearings other than the plain self-acting bearing, particularly in the
externally pressurized bearing, the whirl frequency can be considerably different than
one-half of the rotational frequency. Therefore, the phenomenon is more properly called
fractional frequency whirl. Since fractional frequency whirl is excited by forces gener-
ated within the fluid film of the bearing, it is not possible to eliminate it by increasing
speed, as is the case with a synchronous resonant condition. Any attempt to increase
speed once fractional frequency whirl has begun usually results in rubbing contact be-
tween the journal and the bearing.



A major part of the research in gas-lubricated bearings has been directed toward de-
velopment of bearing configurations that will operate stably when the load is small or
zero. Three designs have received primary consideration: herringbone-grooved, tilting-
pad, and externally pressurized bearings.

(1) Herringbone-grooved bearing. Shallow helical grooves are cut in either the jour-
nal or the bearing to create an inward-pumping viscous pump. This type of bearing shows
good promise for operating stably to high speeds (ref. 1), but clearances must be kept
very low, approximately 0. 5><10'3 centimeter per centimeter of shaft radius. These low
clearances may cause problems at assembly or when thermal distortion is present, and
they require extreme cleanliness of the lubricating gas.

(2) Tilting-pad bearing. This is perhaps the most stable type of gas bearing (ref. 2),
but the flexures or pivots required for each of the pads increase the complexity of the sys-
tem and can lead to fatigue or fretting problems in long-term use.

(3) Externally pressurized bearing. This type of bearing operates well at moderate
clearances (10_3 cm/cm) and has fairly good stability characteristics. The chief disad-
vantage is the need for a source of lubricant under pressure. However, sufficient pres-
sure may be generated within the system which uses the gas bearings, so that some of the
high-pressure gas may be bled off and used for the bearings without imposing severe pen-
alties on cycle efficiency. This is especially true in large systems. In these systems,
externally pressurized bearings may be advantageous and even mandatory, because self-
acting bearings large enough to support the required load are impractical. This is so be-
cause the load capacity of a self-acting bearing is proportional to the square of its diam-
eter, while the load imposed is a function of the rotating mass, which varies as the cube
of the rotor diameter.

Startup problems are common to all of these bearing types. Proper selection of
bearing materials will minimize these problems. If the rotor can be ''floated'’ by exter-
nal pressurization before rotation is attempted, however, the materials problems is re-
duced considerably. This is easily accomplished in the externally pressurized bearing,
and it is common practice, even with tilting-pad bearings to include provision for exter-
nal pressurization at startup (ref. 3). Obviously, the externally pressurized bearing is
simpler than the tilting-pad bearing when the latter must be externally pressurized for
startup.

Since externally pressurized bearings may be the best choice for some applications,
it is important to know the conditions under which these bearings will operate stably. Be-
cause of the large number of parameters that may vary in a physical system, it is slow
and expensive to rely solely on experimentation to gain needed information, and it be-
comes extremely desirable to apply analytical techniques to the stability problem.

A previous analysis (ref. 4) predicts stable regions of operation for externally pres-
surized gas-lubricated bearings operating at finite (nonzero) eccentricities. Account is
taken of orifice recess volume, and an attempt is made to account for having a finite num-
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ber of orifices rather than a line source, which is usually assumed. However, the method
is quite cumbersome and expensive to apply in terms of computer time. In addition, the
analysis requires modification to be applicable to bearings in which the lubricant is intro-
duced at more than one axial location.

A need exists, therefore, for a technique that will provide stability information for an
unloaded bearing. Pan (ref. 5) has outlined a general method that is applicable to both
loaded and unloaded bearings. For the case of an unloaded bearing, the method is quite
simple to apply: the only information needed is steady-state operating data for small am-
plitude constant whirling. On the other hand, Lund (ref. 6) has derived the expressions
for the steady-state load and attitude angle for an externally pressurized bearing operating
with a small eccentricity.

The analysis of reference 6 may easily be modified to yield a solution for steady
whirling, including the effect of orifice recess volume. When this modified analysis is
subjected to the stability criteria of reference 5, the regions of stable operation of an ex-
ternally pressurized bearing are quite easily determined.

The objectives of this report are to (1) combine the methods of references 4 to 6 to
obtain a stability analysis for an externally pressurized gas-lubricated journal bearing
operating at zero steady-state eccentricity, (2) develop and present a computer program
to carry out the analysis, (3) present representative results of the analysis, and (4) com-
pare the analytical results with experimental data.

ANALYSIS

The analysis is accomplished by applying the expressions from reference 4 concern-
ing orifice recess volume to the analysis of reference 6 to obtain solutions for steady cir-
cular whirling as in reference 7. These solutions are then subjected to the stability cri-
teria of reference 5. The analysis is presented in its entirety for better unification of the
various constituents.

The configuration to be analyzed is that of an externally pressurized gas-lubricated
journal bearing that has two circumferential rows of orifices (fig. 1). Although, in prac-
tice, there are a finite number of orifices in each of the two rows, in order to make the
problem tractable it is assumed that each row can be represented by a line source. The
starting point in the analysis is the time-dependent, compressible, isothermal Reynolds
equation (ref. 8):

—a—<ph3 a_p)+ —a—<ph3 9P) - guwR -2 (ph) + 121 2 (ph) (1)
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Figure 1. - Geometry of externally pressurized journal bearing.

All symbols are defined in appendix A. This equation may be made dimensionless by
using the variables

, P = H= T=w.t (2)
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Noting that P(aP/ox) = (1/2) (aPz/ax), etc., the dimensionless form of equation (1) is

2 2
2 (g3 3P7) 3 (g3 2P\ 97 2 (PH) + 20 -2 (PH) (3)
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in which the bearing number A is defined by
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The following two cases will be considered:

(1) There is no whirling (wp = ¢ = 0), but an externally applied load causes the bear-

ing to operate with a small eccentricity ratio e.
(2) There is no external load, but the journal is whirling in a small circular orbit
about the bearing center with frequency w. ..

For both cases there will be a force generated in the fluid film which will tend to move the

journal center toward the bearing center.

'If the journal and bearing axes are assumed to be always parallel, the dimensionless

film thickness H for case 1 is given by
H() =1+ € cos 0
and for case 2 by
H(@,7) =1+€cos(@ -7)=1+¢€ cos 6"

As in reference 7, a rotating coordinate system is introduced by

0 =0 -1
Then

20 20"
and

8. 9

ar 20"

For both cases 1 and 2, the Reynolds equation becomes

2 2.2
2 (g32P7), 3i=2(A-o)<H%-Pesine">
0\ gk 22 Y

where, in the last term, 1 + € cos 8% has been substituted for H.
The pressure P may now be represented as a power series in the eccentricity

(6)

(7

(8)

(9a)

(9b)

(10)

ratio €. For small values of €, it will be sufficient to consider only the first two terms

of the series:



P(6",8) =P(¢) + €Py(6",0) (12)

If equations (11) and (7) are substituted into equation (10) and the resulting expression is
considered an identity in €, a separate equation may be written for each power of €
which appears. If powers of e higher than 1 are neglected, two equations result:

—2=0 (12)

P,sing | =0 (13)

2%(P,P,) . 2%(PyP,) -0 (L 8(PgPy)

20™ 2 oe?

*
1Po a0
Before complete solutions of these equations can be obtained, boundary conditions for

P, and P1 must be found.

At the end of the bearing, the film pressure p equals the atmospheric pressure p,-
The conditions on P0 and P1 are then

0

Py=1 and P =0 at {=0 (14)

The pressure is symmetric about the bearing midplane; thus,

aPO aP1
—=——=0 at {=¢&+£ (15)
ot ot
where
L-L
£ = 1 (16a)
D
and
L
£y = (16D)

With this condition, it is necessary to obtain a solution in only one-half of the bearing. At
the feeding planes, the gas flow through the orifice restrictors equals the flow out through
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the bearing. The dimensionless mass flow through a single orifice is given by

MWT)I/Z:,n:a( %k >1/2< 2 >1/(k—1) 395< 9 >k/(k_1)
ma®P p_ k+1 K+ 1 P, \k+1
}(17)
1/2
M(Q?T)l/z mza( %%k )1/2 il/k . P__(k 1)/k §>< , )k/(k—l)
7ra2P P k-1 Py PS Ps k+ 1
s a )

To approximately account for the effect of inherent compensation, Lund (ref. 4) proposed

to modlfy the mass flow in equation (17) by dividing by the factor |:1+ (G/H)Z:l 2, where
6=a /dC is the "'inherent compensation factor.'

The orifice recess (fig. 1), which has a volume Vc’ can act as a reservoir for the
supply gas. The actual mass flow into the bearing from one orifice recess is

. p.V.w_0dP
=M -_2¢P P_ (18)
AT oT

in which Pc is the dimensionless pressure in the recess. Since the inherent compensa-
tion factor is assumed to be small, the pressure in the bearing adjacent to the orifice re-
cess will be infinitesimally different from the pressure in the recess, and is also denoted

by PC. The dimensional orifice mass flow modified for inherent compensation is denoted
by Mc and is given by

2
Ta Pspa

M = m (19)

(2T) /2 ) T2
atl

The Hagen-Poiseulle law gives the flow in the bearing away from the feeding plane. This
must equal the flow out of the orifice recesses. Since there are N/2 orifices in each
row, equations of mass flow into and out of the bearing yield, per unit of circumference,

3.3 2
N (3 _PaVe®p Pc) _PH CP;fop _3P (20)
4R\ ¢ @7 oar/) 12uRAT \ot L



The right side of this expression denotes a discontinuity in the axial derivative of the pres-
sure at € = £ due to the gas entering the bearing at this point. The mass flow may be ex-
pressed in a power series in € in the same way as the pressure. If, again, only powers

of € through 1 are retained,

. aM,,
M,=M, +e— (21)

d€ €=0

If one now substitutes the expression found by differentiating equation (19) for aM c/ d€ in
equation (21) and then combines equations (7), (11), and (21) with equation (20), an expres-

sion results which, again, may be considered an identity in . If powers of ¢ only
through 1 are retained, two equations result

2Py o2
q=—2 -2 (22)
d L .
{=¢ C=£
a(POPl) a(POPl) _qf1 am 34 262 cos 8] + oy a(POPI) (23)
at Y . 2\mg ac L5 17 50*
$=¢ §=¢ €=0 £=¢
in which the following definitions are used:
q-= AtmOPs (24)
2 1/2 '
p,C3(1 + 0%)
NV
Y = , c - PV % (26)
7D CPOc Oc

To evaluate 9m/de€, one writes



om__am_ \Ps/_Pic om (27)

From equation (17),

> (28)
1-
<f§5 O g
om =a[ 9 ]1/2 12 ES>< 9 >k/(k—1)
; fg k(k - 1) . (k—l)/kl/z P, \k+1
P 1- _£>
P )
If “DO is defined by
A
wo____ t Jm (29)
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boundary condition (23) becomes

a(P,P.) 2
0" 1 6%+ 1.5
-0y, o +YoPoP; = -a o +1.9

*
e=t* 0 52 + 1

3(PyPy) 7

Cle

(PP
.01 cos 0* (30)

g=g= O€

Now that the boundary conditions have been established, the differential equations



can be solved. The solution of equation (12) for Py (the concentric solution) is easily ob-

tained as
2
P0 =1+q £ <&
(31)
P-14qt E<E<E+E,
A solution of equation (13) may be obtained by assuming that
.9*
PP, = Re|G(E)e™? :l (32)

in which G is a complex function of £. If this expression is inserted into equation (13)
*

. ¥ .
and it is noted that sin 0% = Ke (ie_le >, one obtains, after dividing through by e_le s
Tt 1 G
G -G+1(A-o)—-+P0=0 (33)
Po

The primes denote differentiation with respect to the argument ¢. The boundary condi-
tions on Py from equations (14), (15), and (30) become, respectively,

G=0at =0 (34)
G'=0 at {=£+£ (35)
and
. 52+1.5
G'|l_-G& +t (11/0 + 1011/1)G =q—" > (36)
£ £ 1+ 52

The ordinary differential equation (eq. (33)) may now be solved numerically by using
a forward integration technique such as Runge-Kutta. The procedure is: Assume a func-
tion Gﬁ which satisfies all the conditions for G except that G’ ﬁ(O) = B, an arbitrary
complex number. Integrate the differential equation (eq. 33)) for GB from ¢ =0 to
¢ = ¢ and apply equation (36). Continue the integrationto ¢ = ¢ + 51 and store the value
of G'B(I;' + 3;1) = B. Now assume another function Gy for which G'Y(O) =y and repeat
the above procedure to obtain G'y(g + 51) = I'. The linearity of the differential equation
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(eq. 33)) allows the use of a linear combination of the two solutions just obtained to yield
a third solution which satisfies boundary condition (35). Set G'(0) = (8T - vB)/(T - B)
and a third integration will yield the desired function G({).

Determination of Load

The radial and tangential forces acting on the bearing may now be determined by in-
tegrating the film pressure over the bearing area:

L/2 p27 £
-cos @ *
=2 paP x« fRAO dz |
siné
0 0
&+ 27
2 ' € gt [eos 67
= 2R"p, P0+—/2e(Ge ) « 5do dg
P0 siné
0 0

*
Since PO is independent of 6 , its contribution to the bearing forces will be zero. Per-
forming the rest of the 9* integration, noting that

- 4
Re (G e 10 > = Gﬂe cos 0" + Gﬂm sing”

(where Gﬂe and Gﬂm are the real and imaginary parts of G, respectively), one has

(in dimensionless variables):

§+§1
£ a€_ 1 “Re G
a _ & oae (37)
f, 2(.5 + gl) P0 2t + £) £E) | Im P,
0

The dimensionless forces in equation (37) are defined by
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F ™
f =
r epaLD
>
F
ft=
epaLD

(38)

Thus, the bearing load components are determined simply as the integral of G/PO‘ This
integration is conveniently carried out at the same time the differential equation (eq. (33))
is solved. In fact, _/'(G/Po)at may be expressed as a linear combination of f(GB/PO)ac
and f (GY/PO)BC and only two integrations of differential equation (33) are necessary. In

terms of GB and G,y,

£+t g4t
£ “Re G G
- L T Ba-B ¥ e (39)
ft 2(5 + 51)(1-‘ - B) jm . PO . PO

The bearing radial and tangential load components, which are illustrated in figure 2, are

Angular
coordinate,
6*=0-1

12

Attitude angle, &

—

Rotation

Tangential
bearing

load compo-
nent, Fy

r Eccentricity, e
{
> Radiat

AN

bearing load
component, Fr

Total
bearing
load, W

Figure 2. - Notation for eccentric bearing.



now determined as functions of bearing geometry, supply pressure ratio P s’ bearing
number A, and frequency number o. The total bearing load

1/2
W = (Ff + Ff) (40)
and attitude angle
F
@ =tan 1 _L (41)
F

-

may now be calculated.

Stability Criteria

If the bearing is operating stably, o = 0. To determine the threshold of instability,
according to the work of Pan (ref. 5), o is varied until F, =0. Under this condition,
the centrifugal force due to the whirling mass is equated to the radial bearing force to find
the neutral stability condition:

2 _
Me Won = Fon (42)

The subscript n is used to denote the condition where Ft = 0. When the bearing is

whirling, it is assumed that the flow of gas through the orifice does not vary with time,

since the orifices lie behind the recess volume, which acts to dampen flow fluctuations.
A dimensionless mass may be defined by

M, =2 <9> (43)

In terms of previously calculated quantities, 1\_/11 for the neutral stability condition is
given by

(44)

13



It is shown in reference 5 that M, is an upper limit of ﬁl for stability if the quantity
aft/aa is negative at o = 0 conversely, M1n is a lower limit for stability if aft/ao
is positive at o = o, The definition of M1 used herein differs by a factor of 2 from
the dimensionless mass used in reference 4; however, it is identical to that used in sta-
bility studies of herringbone-grooved gas bearings (refs. 1 and 9).

Another convenient parameter expressing the mass in dimensionless form is

. 5 - MCo? (45)
2 p,LD

It is related to M1 by

2
— A p—
M,=2>M (46)
2735 1
_ o\
M 2n = frn <_> (47)
“p

Each of these dimensionless masses, M_l and MZ’ has its particular advantages.
Examination of equation (43) shows that M1 depends only on the properties of the bear-
ing and lubricant; it is independent of speed. While M, isa function of speed, it will be
seen in the RESULTS AND DISCUSSION section that M2 for many bearing configurations

is nearly constant for a wide range of A.

RESULTS AND DISCUSSION

Numerical results have been obtained for dimensionless load W, attitude angle ¢,
masses 1\_/Iln and Mzn’ and whirl ratio w_/w by using the procedure described in the
preceding section. All computations were performed by a high-speed digital computer.
The computer program, with sample input and output, is given in appendix B. The bear-
ing configuration chosen has a length-to-diameter ratio L/D of 1.5, with two circumfer-
ential feeding planes each located a distance L/4 from the center plane of the bearing;
that is, Ll/D = 0.75. The inherent compensation factor 6 was set at 0,447, which makes
1 +'62 = 1.2, These values correspond to those of an externally pressurized journal bear-
ing being evaluated experimentally. In reference 10, orifice discharge coefficients are
given as a function of the pressure ratio across the orifice and the Reynolds number of the
flow. For the conditions encountered in externally pressurized bearings, a reasonable
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mean value is 0.7. Accordingly, this value was used in the calculations. Three values
of the feeding parameter At were used: 2, 4, and 10.

Steady-State Results

The steady-state results are identical to those which would be produced by the analy-
sis of reference 6, except for the use of the inherent compensation factor! However, in
that reference, no results are given for a bearing with double-plane admission. Inspec-
tion of differential equation (33) and boundary conditions (34) to (36) together with the
definition of 2 (eq. (26)), shows that the recess volume ratio v enters in only through
¥y, which appears in equation (36). For steady-state operation, o, which multiplies 28
is zero, and thus the solution does not depend on v. Accordingly, plots of dimensionless
load and attitude angle, in figures 3 and 4, are valid for all values of recess volume ratio.

e = —

8 .
F Pressure ratio,

PS e —
10 - Feeding
T / parameter,
s M
/ --—- 2
6r— E— 4

/ -——- 10

Dimensionless load, W/ep,LD

| | | |
0 10 20 30 40 50
Bearing number, A

Figure 3. - Steady-state load capacity of externally pres-
surized bearing. Ratio of bearing length to diameter,
1.5; ratio of distance between feeding planes to bearing
diameter, 0.75; orifice discharge coefficient, 0.7; in-
herent compensation factor, 0. 447.
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P
s parameter,
I --\2 At
f — 2
40 ]L \ T
[
| — Self-acting
/  {lunpressurized)
35 bearing

Attitude angle, ¢

0 2 40 60 80 100
Bearing number, A

Figure 4. - Steady-state attitude angle for externally pres-
surized bearing. Ratio of bearing length to diameter,
1.5 ratio of distance between feeding planes to bearing
diameter, 0.75; orifice discharge coefficient, 0.7; in-
herent compensation factor, 0,447,

Figure 3 shows the load capacity increase due to rotational effects. This increase is

larger for larger values of the feeding parameter Ay but is relatively insensitive to
pressure ratio Ps' For higher values of Ps’ however, the zero speed load is higher, so
that the total load capacity at all speeds does increase significantly with P s For all but
the lowest value of P s’ the load capacity of the pressurized bearing exceeds that of the
unpressurized, plain bearing. For At = 10 and PS = 2, however, the unpressurized
bearing carries a higher load than the pressurized bearing for 1/2 <A < 5.

Attitude angles are shown in figure 4. The attitude angle ¢ at zero speed is always
zero. Attitude angle increases rapidly with A initially, and then falls asymptotically

16



to zeroas A — «. There are three curves in figure 4 which lie partly above that for the
plain bearing, indicating that a pressurized bearing does not always have a smaller atti-
tude angle than a self-acting bearing. An increase in pressure ratio always reduces ¢,
but the behavior with changing At is not so clearcut. For low pressure ratios and high
A, ¢ increases with increasing At’ but the opposite trend appears to occur for low A
and high PS.

Stability Results

The dimensionless mass ﬁzn is plotted against bearing number A in figures 5(a),
(b), and (c) for values of Ay of 2, 4, and 10, respectively. In each of these figures are
curves for PS of 2, 5, and 10, and recess volume ratios v of 0, 0.2, and 0.4. The
curves denote the largest value of M, for which the bearing will be stable.

The most striking feature of the figures is that M2n does not vary with A when
v = 0; that is, when there is no orifice recess, the stability as measured by M2rl is in-

dependent of the bearing number. For finite recess volumes, the dependence of M2n
on A becomes stronger as v increases; M2n increases with A to an intermediate
value of A, and then decreases. An increase in v always decreases stability.

Another interesting result is that increasing the pressure ratio does not always in-
crease stability, as is commonly assumed. At low values of A an increase in pressure
ratio may actually decrease stability. This effect is accentuated more and more as the
recess volume is increased. The reason is that high pressure ratio and large recess vol-
ume are the conditions which promote pneumatic hammer.

A comparison of figures 5(a), (b), and (c) shows that a variation in Ay has the same
qualitative effect as a variation in PS; that is, an increase in At increases stability at
low values of v, and decreases stability at high values of v and low A.

Some preliminary experimental data from the NASA Lewis externally pressurized
test facility are plotted in figure 5(b). The recess volume ratio in the experimental setup
was approximately 0.4; other parameters are approximately as shown in figure 5(b). The
pressure ratio is indicated next to each plotted point. The experimental points fall ap-
proximately where curves would be for v = 0.1, except for the point Ps = 2.2, which is
lower, and, in fact, close to the line v = 0.4. Agreement can generally be considered
fair. Part of the discrepancy between analysis and experiment could well be due to the
number of orifices in the test apparatus, Whereas the analysis assumes a line source,
there are, in fact, only six orifices in each row in the experimental setup. This could
well reduce the effect of the large recess volume.

The experimental apparatus contains two externally pressurized bearings with a rela-
tively short span. Consequently, when the rotor became unstable, it whirled in a conical
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mode. The mass which was used in the experimental values of MZn was an ''equivalent
mass for conical whirl'' defined by
Meq ) 4(Itr - Ip)
lz
wherein I, and Ip are the transverse and polar mass moments of inertia, respec-
tively, and ! is the bearing span. This form is suggested by the solutions to the equa-
tions of motion of a rigid rotor presented in reference 11.

The data of figure 5(b) have been replotted in figure 6 with K/I—1 n s the ordinate in-
stead of M2n' A's already mentioned, M1 has the advantage that its definition does not
include speed, so that in a given physical setup it remains constant, except for the varia-
tion in clearance due to centrifugal force. The experimental points of figure 5(b) are also
replotted, and the change in ﬁ1 due to centrifugal growth of the rotor is evident.

The abscissa has been extended from A = 0.5 to A =0 on a linear scale. For a
pressure ratio of 10 and recess volume ratio of 0. 4, Mln remains finite for A =0, indi-
cating a susceptibility to pneumatic hammer. For the lower pressure ratios and recess
volume ratios, Mln -~ o as A - 0, indicating that the bearing is inherently stable when
there is no rotation. The tendency toward pneumatic hammer may also be deduced from
figure 5. 1If MZn approaches a finite value as A - 0, there will be no hammer. On the
other hand, if M2n -0 as A-0, Mln remains finite as A - 0, and pneumatic hammer
is possible.

The curves of figures 5 and 6 indicate the heretofore largely unrecognized importance
of recess volume in journal bearings. Within the range of variables plotted, changes in v
cause larger changes in stability limits than do pressure ratio or feeding parameter. In
the design of bearings where instability may be a problem, therefore, it is essential that
the recess volume ratio be minimized.

According to the analysis, the instability will occur at some characteristic frequency.
For finite A, this frequency may be conveniently expressed as a whirl ratio w_/w. Fig-
ure 7 illustrates the characteristic whirl ratios corresponding to the stability curves of
figures 5(b) and 6. When the recess volume is zero, the whirl ratio is always 0.5, or
""half frequency.'' Whirl ratio w_/w increases with increasing v, and decreases with
decreasing A, approaching w_/w =0.5 as A — «. For the case of pneumatic hammer,
w=A =0 and, of course, w_/w = . Thus, the values for b = 10 and v=0.4 in fig-
ure 7, becoming large for small A, indicate again that hammer may be a problem for
this configuration.

Experimental values are also plotted in figure 7. Again, the pressure ratio is indi-
cated next to each plotted point. These points bear the same relation to the analytical
curves as in figures 5(b) and 6; that is, the experimental points correspond to analytical
curves for smaller values of v than were measured.
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Relation Between Attitude Angle and Stability

It is popularly assumed that the steady-state attitude angle is a measure of the sta-
bility of a fluid-film bearing, a low attitude angle indicating a stable bearing, and a high
attitude angle a potentially unstable bearing (ref. 12). This is definitely not the case for
the externally pressurized gas-lubricated bearing studied in this report, as an examina-
tion of figures 4 to 6 will show.

To eliminate the effect of variable recess volume, at first only the stability curves
for v =0 will be considered. Looking at the variation with A, one sees that, for all
values of pressure ratio and feeding parameter, ¢ first increases with A and then de-
creases asymptotically to zero, while Mln decreases continuously and MZn remains
constant. Thus, correlation between ¢ and stability is essentially nonexistent. Now,
consider the variation with feeding parameter Ai. Stability increases with At’ while at
low pressure ratios @ also increases with At' At higher pressure ratios, the behavior
of ¢ with A is anomalous. A plain (unpressurized) bearing, corresponding to At =0,
has an attitude angle lower than that for some pressurized bearings, except at very low
A, and yet the plain bearing is always inherently unstable. When pressure ratio is con-
sidered, the attitude angle decreases with increased P s while stability does increase.
However, if now recess volumes other than zero are considered, stability does not al-
ways increase with increasing P s One concludes that attitude angle is a very unreliable
predictor of stability.
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SUMMARY OF RESULTS

A small eccentricity stability analysis has been performed for an externally pres-
surized gas-lubricated bearing that has two feeding planes, each of which is considered
to be a line source. A computer program was written to implement the analysis. The
following results were obtained for a bearing having a length-to-diameter ratio of 1.5
with two feeding planes located midway between the center and ends of the bearing (quar-
ter plane admission):

1. Stability decreases markedly with increasing recess volume.

2. There is no correlation between stability and steady-state attitude angle.

3. With large recess volumes and low bearing numbers, an increase in pressure ra-
tio may decrease stability. For sufficiently high recess volumes and pressure ratios,
pneumatic hammer is possible.

4. The increase in steady-state load capacity due to rotation increases with increas-
ing feeding parameter but is relatively insensitive to pressure ratio; however, total load
capacity does increase with increasing pressure ratio.

5. When the orifice recess volume is zero, the dimensionless mass Mln does not
vary with bearing number A.

6. Steady-state attitude angles are sometimes larger than those in plain (unpres-
surized) bearings.

7. The whirl ratio at the threshold of instability is always 0.5 when the recess vol-
ume is zero. Whirl ratio increases with increasing recess volume, but approaches 0.5
asymptotically at large bearing numbers.

8. Preliminary experimental data are in fair agreement with the analytical results.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 5, 1968,
129-03-13-05-22.
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APPENDIX A

SYMBOLS
orifice radius P
clearance at zero eccentricity Py
bearing diameter p
orifice recess diameter P,
eccentricity q
bearing load component
dimensionless load component, AT
F/epaLD
dimensionless complex function t
of ¢ v
dimensionless clearance, h/C Vc
local film thickness
rotor polar and transverse mass W
moments of inertia x
V1 .
specific heat ratio o
bearing length B,y
distance between feeding planes B,
bearing span 5
rotor mass per bearing
lubricant flow rate €
dimensionless rotor mass, 9
(mp_/2Lu2)(c/R)®
dimensionless rotor mass, 2
MCw?/p, LD o*
dimensionless lubricant flow
A

rate, M(QT) 1/Z/Wa‘?Pspa

number of orifices per bearing

dimensionless pressure, p/pa
perturbed pressure

pressure

atmospheric pressure
AtmoPs

bearing radius

gas constant times absolute
temperature

time
orifice recess volume

orifice recess volume ratio,
NVc/nDLC

total bearing load

coordinate in direction of motion
axial coordinate

orifice (discharge) coefficient
complex values of G'(0)
complex values of G'(§£ + 51)

inherent compensation factor,
a2/dC

eccentricity ratio, e/C

dimensionless axial coordinate,
z/R

angular coordinate

angular coordinate, 6 - wpt

bearing number, 6uw(R/C) 2/ P,
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feeding parameter,
1/2

Esp,Naz(gt T) 1/2]/pac3(1 + 62>

lubricant dynami¢ viscosity

(L - L;)/D

L,/D

frequency nurrzlber,
12p0,(R/C) /b,

dimensionless time, wpt

attitude angle

"(At/2P0c) [am/a(Pc/Ps)]

2
NV /7D“CP,

e=0

w rotational speed

wp frequency of whirling
Subscripts:
b condition immediately down-

stream of orifice recess

c condition immediately down-
stream of orifice

n condition at which Ft =0

0 zero eccentricity

r radial

s condition upstream of orifice
t tangential



APPENDIX B

COMPUTER PROGRAM TO DETERMINE STABILITY OF EXTERNALLY
PRESSURIZED GAS-LUBRICATED JOURNAL BEARING

The program for determining steady-state and stability characteristics of the ex-
ternally pressurized bearing is written in FORTRAN IV, version 13, for use on the IBM
7094-11I digital computer at Lewis Research Center. Minor modifications may be neces-
sary to allow the program to be used with other computing systems.

Program Input

_Two variables are set within the program: k, the specific heat ratio of the lubricant
gas, and RKEP, an accuracy parameter. As the program operates, the step size in the
Runge-Kutta differential equation solver is successively halved until the magnitude of the
bearing load varies by less than RKEP times W.

The remainder of the information needed by the program is read from punched cards.
One card contains the array of bearing numbers A to be used (up to 19 values). A pair
of cards shows each configuration to be analyzed. The first of this pair gives geometric
and operating parameters; the second gives initial estimates of the frequency number o,
one for each A value. Specific formats follow.

Bearing number array card: Format (14, 19F4.0)
First four-column field: the number of A's in the array, integer format, right
adjusted.
Succeeding four-column fields: the values of A for which calculations are desired,
real format (with decimal point).

Geometric configuration card: Format (10F8.0)
Succeeding eight-column fields contain, in real format (with decimal point):
(L - L,)/D, Ly/D, A, P, v, @, and 1+ 52,
Frequency number estimate card: Format (4X, 19F4.0)
First four-column field is not read. Succeeding four-column fields contain, in real
format (with decimal point) the initial estimate of frequency number ¢, one value
for each A.

Any number of pairs of geometric configuration and frequency number estimate cards may
be used.

Sample program input follows the program listing included at the end of this appen-

25



dix. The first card, the A array, indicates there are 19 A values ranging from 0 to 100.
This card is followed by the first geometric configuration card, which indicates that

(L -L,)/D=0.75, L,/D=0.75, A, =4, P_=5,v=0.4, =0.7, and 1+562=1.2,
After this card is the first o estimate card showing initial estimates of o, which cor-
respond to the A array, of 3 to 100. A second configuration card and ¢ estimate card
conclude the sample input.

Program Output

Output consists of two sheets for each configuration: A ''working sheet'' and a ''cal-
culation summary sheet."’

The working sheet shows the geometric and operating parameters, trial values for
determination of the pressure downstream of the orifices, final value of orifice down-
stream pressure, Yo ¥1» and RKEP. For each A in the array, there appear, for each
trial value of o: A, fr, ft’ W/(epaLD), W/[e(Ps - pa)LD:l , @, ﬁz, final Runge-Kutta
step size, Ml’ wp/w, and 0. A sample working sheet appears as figure 8. The data ap-
pearing thereon were generated from the values shown in the sample input.

The calculation summary sheet again shows the geometric and operating parameters,
and, for each A of the A array: W/(ep,LD), ¢, wpn/w, O MZn’ and Mln' Figure 9
shows an example of a summary sheet. Again, the data correspond to those of the sam-
ple input. Program execution time for the sample input was 0.9 minute.
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140

DIMENSION SLAM(20),SW(20)},SPHI(20),SW3(20),SCM(20),SSIG(20}
DIMENSION ACM(20)

COMMON XT

COMMON /CRK/ QD, XIls CG

COMMON /CDR/ Qy GD '

COMMON /CFUN/ V4 LTy ALFA, PCRy K

COMMON /CHS/ LAMBDA,PSO,PS14DXsRDX4sCMA,VVsW,PHICMC4WR,RKEP
REAL LAMBDA, LT, K

COMPLEX DX, GDy CG

DATA EPS/1.E-5/, EPSW/1.E-3/

K = 1.4

RKEP = ,005

READ (5,1) IS, (SLAM{I)y I = 1, IS)

FORMAT (I4419F4.0)

READ {595) XI+XI1lsLT,V4VC,ALFA,D]

FORMAT (10F8.0)

READ (5,2) (SSIG{I}, I =1, IS)

FORMAT (4X419F4.0)

vV =V

WRITE(644)

FORMAT {(1H1/8X, 67HP-PERTURBATION ANALYSTS FOR HYBRID BEARING IN S
1TEADY CIRCULAR WHIRL )

XI1=L(OQUTBOARD} /D, X11=L{INBDARD)/D, LT=LAMBDA(T),ALFA=ORIFICE COEFFICIENT
V=PS/PA, VC=FEEDER HOLE VOLUME RATIO, DI=1+DELTA#%%2
X11=0 DENOTES SINGLE PLANE FEEDING

WRITE (6496) XI¢XIlseLTyD14KyALFA,V,VC

FORMAT (6HL /D 8Xy4HL1/D 7Xys8HLAMBDA T 4X,10H1+DELTA%%2 3X,
1 7HK=CP/CV 7Xy4HALFA 6X,7THV=PS/PA 7X,2HVC /11G12.3)

PCR = (2./(K+]))*¥(K/(K=1.))

YA = PCR

WRITE (6,8)

FORMAT (20HLSOLVE FOR YA = PC/V/)

DO 20 I = 1,10

CALL FUN(YA,DYA,PSO)

WRITE(6,10) I, YA, DYA

FORMAT (14,4X92HYA Gl4.643HDYA Gl4.6)

IF{ABS(DYA/YA).LE.EPS) GO TO 25

YA = YA + DYA

YA = AMIN1 (YA, .99)

GO 70 3

0 = ((YARV)*%2 —1.)}/XI

QD = Q*(DL + .5)/D1

PSO = PSO/(2.%YA%V)

PSL = VCX(XI+XI1)/(YA*V)

WRITE (6426) YA,PSO,PS14RKEP

FORMAT (9HK PC/PS Gl0.345H PSO G10.3,6H PS1 G10.3,47H RKDX
1 25H REDUCED UNTIL ERROR .LE. Gl10.3)

DO 300 I=1,41S

WRITE (64140)

FORMAT {8HK LAMBDA 4X,8HFR/EPALD 3X,8HFT/EPALD 4X,7HW/EPALD 2X,
1 12HW/E(PS~PAILD 4Xy3HPHI 4X,9HMCW2/PALD 7X,4HRKDX 5X,

1 12HMPC5/2LR5MU2 1X, 11HWHIRL RATIO 1X,12HVIB NR SIGMA )
LAMBDA = SLAM(I)

SIGl = SSIG(I)

DS = 2.
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210
150

220

230
235
299

300

600

325

IF (LAMBDA.GE.15.,) DS=4.

CALL HYST (0.,GIO0)

IF (LAMBDA.EQ.O.) GI0=.25

SW(T) = W

SPHI(I) =PHI

CALL HYST (SIGl, GIL)

SIG = SIGL

IF (ABS(GI1/GID).LE.EPSW} GO TO 299

DS1 = SIGN (DS, GIl)

SiG2 = SIGL

DO 150 J = 1, 20

SIG2 = S1G2 + DS1

CALL HYST (SIG2, GI2)

SIG = SIG2

IF (ABS(GI2/GIO).LELEPSW} GO TO 299

DS2 = SIGN (DS, GI2)

1F (DS2 - DS1) 220, 210, 220

SIG1 = SIG2

GIl = GI2

GO TD 299

N0 235 J = 1, 10

SIG = (GI2*SIGY - GI1*SI1G2)/(6I12 - GIL)

CALL HYST (SI1Gy GI}

IF(ABS(GI/GIN) LLELEPSW) GO TO 299

IF (ABS(GI2).GT.ABS(GI1l)) GO TO 230

GIl = GI2

SIGYL = SIG2

GI2 = GI

SI1G2 = SIG

SW3(T)=WR

ACM{I) = CMA

SCM(T1)=CMC

SSIG(I) = SIG

CONTINUE

WRITE(6,44)

WRITE (6,600) XI,XIl,LT, Dl14KsALFA,V,VC,YA,PSO,PS]1,4RKEP
FORMAT(1HL 8X,s3HL/D 8X,4HL1/D 6Xs8HLAMBDA T 4X,10H1+DELTA**2 3X,
1 7HK=CP/CV 6Xy4HALFA/5X,6G12.3//7XyTHV=PS/PA 2X,
213HCL.VOL.RAT,VC 3Xy5HPC/PS BXy3HPSO 9X43HPS1l 9Xy4HRKEP/5X,6612.3)
WRITE (64325) (SLAM(I)4SW(I)4SPHI(I) SW3(1),SSIG{T),ACM(T),SCM(I),
1 I=1,1S)

FORMAT (/1HL T7X36HBRG NR 3X,8HBRG LOAD 2X,22HATT ANGLE WHIRL RAT
1100 2X36HVIB NR 3X,20HSTABILITY PARAMETERS / 8X,6HLAMBDA 4X,
2 THW/EPALD 5Xs3HPHI 6X,BHW3/0MEGA 4X,5HSIGMA 4X,9HMCWZ2 /PALD 2X,
3 12HMPC5/2LR5MU2 / (/7X42G10+34611.3,G12.3,2G10.3,612.3)}

GO 70 3

END

$IBFTC FUNF

10

SUBROUTINE FUN (Y, DY, PSO)
COMMON X1

COMMON /CFUN/ V, LTy ALFA, PCR, K
REAL LT,MyK

IF(Y.GT.PCR) GO TO 10

M = ALFAXSQRT(2.%K/{(K+1.})*PCR**(1,/K)
PSO = 0.

GO TO 15

T = SORT(1.-Y**({K-1.)/K))

TC = SORT(2.%K/{K-1.}})*ALFA

M = TCxTHY®%(]1./K)




15

PSO = ~LT#TC/T#(Y%%((1.=K)}/K} — (K+Lo)/2.}/K
T = YRVEV/X]

F = LT#VEM = Y%T + 1./XI

DF = V#PSO + 2.%T

DY = F/DF
RETURN
END

$IBFTC HYDST

C
C

110
120

145

SUBROUTINE HYST (SIGMA, GI)

COMMON XI

COMMON /CRK/ QD,y XIl,y CG

COMMON /CHS/LAMBDAsPSO4yPS14yDXyRDXsCMA4VyWsPHI»CMC 9y WR,RKEP
COMMON /CDR/ Qs GD

REAL LAMBDA

COMPLEX AA,AB,BA,BB,CA,CB,DX,GD,CG,TDX

CG = PSO

IF (SIGMA.NE.O.) CG=SIGMA*PS1*(0.s1.)

PSO = 0 WHEN BEARING IS WHIRLING
PSO=0 MEANS ORIFICE MASS FLOW DOES NOT VARY WITH THETA

GD = (Oesle)*{LAMBDA - SIGMA)
DX = .5%XI

TDX = O.

DO 110 N = 1, 8

BA = 0.

BB = (-1l.,-1.)

CALL RKLP {BA,DXyAA,CA)}

CALL RKLP (BB,DX,AB,CB)

CA = 1.57079633/ (XI+XI11)%*(AB*CA - AA*CB)/(AB - AA)
IF (CABS(TDX/CA-1.) .LE., RKEP) GO TO 120

DX = .5%DX

TOX = CA
RDX = REALI(DX)
GR -~REAL(CA)

GI = AIMAG{(CA)
W = CABS(CA}
PHI = ATAN2(GI,GR)*57.,2957796

WV = W/ (V-1.)
WR = 1000.
CMC = 0.

IF (SIGMAJNE.O.) CMC = 144.%GR/SIGMA*%*2

CMA = CMC*LAMBDA%*2/36,

CMS = CMA/(V-1.)

IF (LAMBDA.NE.O.) WR = .5%SIGMA/LAMBDA

WRITE (65145) LAMBDA,GR+GI yWoWVyPHICMA,RDX,CMC4WRySTIGMA
FORMAT (3G11e342612.4+6G11.3,612.4,4G13,.4)

RETURN

END

$IBFTC RKLPS

SUBROUTINE RKLP (GIN,DX,AD,CO)

COMMON XI

COMMON /CRK/ QDy XIl, CG

COMPLEX G(4), Al4), B(4), XF, DX, AD, GIN, CD, CG
EXTERNAL BLP,DLP1

G(1) = 0.
G(2) = 0.
G(3) = GIN
G(4) = 0.
XF = XI
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CALL RKGC(DLPyGyXFsDXyAsBy4)
G(3) = G(3) + QD + CG*G{(2)

IF (X11.EQ.0.} GO 7O 18

XF = XI + XI1

CALL RKGC(DLPlsGoXFeDXyAyBy4)

18 AD = G(3)
CD = G(4)
RETURN
END

$IBFTC DRVLP
SUBROUTINE DLP(G+GP)
COMMON /CDR/ Q4 GD
COMMON XI
COMPLEX GDyG(4),GP(4)
T = REAL(G(1))
GO TO 10
ENTRY DLPL(G,GP)
T = XI
10 GP{1l) = 1.
GP(2}) = G{(3)
S = SORT(1.+0Q*T}

GP(4) = G(2)/S

GP{3) = G(2) — GO*{(GP(4) + S}
RETURN

END

$IBFTC RKGHC
SUBROUTINE RKGC (DERIV, Y, XFINAL, DELTA, Q, YP, N}

C RUNGE-KUTTA-GILL INTEGRATION OF N-1 COMPLEX FUNCTIONS OF COMPLEX

C ARGUMENT Y(1) FROM Y(1)INITIAL TO XFINAL
DIMENSION A(4), B(4)}, Cl4)
COMPLEX Y(l}y Q(1)y YP{1l), XFINAL, DELTA, T
DATA A/.5y 4292893219y 1.70710678y .166666667/y B/24y
1 C/¢5y 4292893219, 1.,70710678, .5/
KK = CABS({XFINAL-Y(1))/DELTA) + .01
IF (KK.LE.O0) GO TO 20
DD 5 I = 1y N
5 Q(I)=0.
DO 10 K = 1y KK
DO 10 J = 1, &
CALL DERIV(Y,YP)
DO 10 I=1,N
T=A(J)=(YP({I)-B({J)I=0Q(1))
Y{I)=Y(I)+DELTA*T

10 QUI)=0{I)+3.%T=C(J)*YP(I)
20 RETURN
END
$DATA
190s +5 le 145 2. 3. 4o 5. 6. 8. 10, 15, 20. 30.
5 o4 o7 1.2

.75 «75 b4a
_E 3, 34 3¢ 3. 4o 54 6o Te 9. 10. 124 17. 22. 31,
ETS « 75 4o 10. o4 .7 1.2

6¢e 8o 9. 9. 10. 1lle 12. 13, 14, 15, 174 21. 264 35,

ley

40,
41.

44,

loy

50.
51.

53.

24/

60.
6l.

63.

80.

8l.

82.

100,—-—A array
100.

101.
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Li/0
0.750

YA = PC/V
0.528282
0.574191
0.571336
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LAMBDA
o
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0. 500
0.500
0.500
0.500
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1.000
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1.000
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FR/ZEPALD
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2.164
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2.151
2.150

LAMBDA T
4.000

A+DELTASR2 K=CP/CV

‘DYA 0.459088E-01
DYA -0.285489E-02
DYA -0.112002E~-04
DYA 0.186657E-08

PSO 0.640E-01

FT/EPALD
=0.313E-06
~-0.187E-01
0.108E-02
0.856E-03
=0.909E-03
0.187e-03

FT/EPALD
O.116
0.623E-01

-0.118E-01

~0.160E-03
0.159E-05

FT/EPALD
0.228
0.156
0.466E-01

=U0.443E-01

-0.289€-02
0. 199E-03

FT/EPALD
0.330
0.262
0.115

=0.365E-02

~0.534E-03
0.307E-05

FT/EPALD
0. %21
0.288
0.113

~0.138E-01

—0.210E-02
0.4T4E-04

1.200 1.400
PSl 0.210 RKDX
W/EPALD W/E(PS-PA)ILD
2.3521 0.5880
2. 3890 0.5973
2.4149 0.6037
2.4138 0.6034
2.4088 0,6022
2.4114 0.6029
W/EPALD W/E(PS-PAILD
2.3647 0.5912
2.3365 0.5861
2.3125 0.5781
2. 3140 0.5785
2.3140 0.5785
W/EPALD W/E(PS-PAILD
2.4010 0.6003
2.2943 0.5736
2.2530 0.5632
2.2587 0.5647
2.2525 0.5631
2.2523 0.5631
W/EPALD W/E(PS-PA)LD
2.4572 0.6143
2.2677 0.5669
241957 0.5489
2.1997 0.5499
2.1990 0.5498
2.1989 0.5497
W/EPALD W/EI(PS-PAILD
2.5280 0.6320
2.1826 0.5457
2.1331 0.5333
2. 1544 0.5386
2. 1506 0.5377
241500 0.5375
Figure 8.

veC
0.400

UNTIL ERROR .LE. 0.500E-02

ALFA V=PS/PA
0.700 5.000
REDUCED
PHI MCW2/PALD
-G.762E-05 Q0
-0.450 ]
0.256E-01L ©
0.203E-01 O
-0.216E-01 O
0.444E-02 0
PHl MCW2/PALD
2.815 0
1.523 0.2595
-0.292 0.9250€E-01
-0.397E-D2 0.10556
0.393E-04 0.1058
PHIE MCW2/PALD
5.433 o
3.902 1.0173
1.185 0.3604
-1l.125 Oa.l844
-0.735E-01 0.2482
0.506E-02 0.2539
PHI MCW2/PALOD
T.720 ]
6,640 2.2524
3.207 D.7894
~0.95LE-01 0.4040
-0.139E-01 0.4111
0.800£-04 0.4123
PHI MCW2/PALD
9.578 0
T7.53%0 2.1635
3.236 0.9467
—0.358 0.5386
~0.5%0E-01 0.5682
0.125E-22 0.5738

- Example of working sheet.

R<DX

0.1875
0.1875
0.1875
0.1875
0.1875
0.1875

RK DX

0.1875
0.1875
0. 1875
0.1875
0.1875

R DX

0.1875
0.1875
0.1875
0.1875
0.1875
0.1875

RK DX

0.1875
0.1875
0.1875
0.1875
0.1875
0.1875

RK DK

0.1875
0.1875
0.1875
0.1875
0.1875
0.1875

MPLS/2L35MU2
[}

38.223
347.74
282.73
148. 44
201.60

MPC5/2LR5MU2

1)

37.370
i3.320
15.199
15.228

WPLS5/2L315MU2
4]

36.624
12.974
6.6367
8.9353
9.1393

MPC5/2L35MU2
o

36.039
12.630
6.4643
6.5774
6.5971

4PC5/2LA5MU2

1)

19.472
8.5206
4.86473
S5.1141
5.1644

WHIRL RATID
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

WHIRL RATID

o

3.0000
5.0000
4.6822
4.6778

WHIRL RATIO
]

1.5000
2.5000
3.5000
3.0125
2.9786

WHIRL RATIO
[}

1.0000
1.6667
2.3333
2.3128
2.3093

WHIRL RATIO

0

1.0000
1.5000
2.0000
1.9454
1.9357

via

vis

viB

vis

vis

NR SI3MA
0

3.0000
1.2300
1.1088
L.5286
1.312%

NR SIGMA

0

3.0320
5.0200
4.6822
&.5773

NR SIGMA
0

3.0000
5.0000
7.0000
5.0251
5.3571

NR SIGMA
0

3.0000
522300
7.0000
5.9385
6.9280

NR SIGMA

0

4.0000
5.0020
B8.0090
7.7818
T.7627
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P-PERTURBATION ANALYSIS FOR HYBRID BEARING IN STEADY CIRCJLAR WHIRL

L/D LL/D LAMBDA ¥ L+DELTA*®*2 K=CP/CY ALFA

0.750 3.750 4.000 1.200 1.400 0.700
V=PS/PA CL.VOL.RAT.VC PC/PS PSO PS1 RKEP

5.000 0.400 0.571 0.640&-01 0.210 0.500E-02

BRG NR BRG LOAD ATT ANGLE WHIRL RATIO VIB NR STABILITY PARAMETERS

LAMBDA W/EPALD PHI W3 /OMEGA SIGMA MCW2/PALD MPC5/2LR54%U2
o 2.352 -0.762E-05 1000. 1.312 0 201.6
0.500 2.365 2.816 4.678 4.678 0.106 15.23
1.000 2.401 5.439 2.979 5.957 0.254 9.139
1.500 2.457 7.720 2.309 6.928 0.412 6.597
2.000 2.528 9.578 1.936 T.743 0.574 5.164
3.000 2.692 12.01 1.522 9.133 0.839 3.557
4.000 2.857 13.06 1.293 10.34 1.183 2.662
5.000 3.004 13.24 1.145 11.45 1.449 2.087
6.000 3.129 12.93 1.040 12.48 i.688 1.688
8.000 3.312 11.75 0.903 l4 .44 2.071 1.165
10.00 3.431 10.47 0.815 16.30 24345 0.844
15.00 3.586 7.992 0.693 20.78 2.655 0.425
20.00 3.656 6.427 0.630 25.21 2.618 0.236
30.00 3.717 4.673 0.570 34,22 2.158 0.863E-01
40.00 3.745 3.732 0.543 43.48 l.654 0.372E~-01
50.00 3.761 3.145 0.529 52,93 1.258 0.181E-01
60.00 3.773 2.740 0.521 62.51 0.970 0.970E-02
80.00 3.787 2.214 0.512 81.95 0.612 0.344E-02
100.0 3.797 1.880 0,508 101.6 D.4lé 0.149E-02

Figure 9. - Calculation summary sheet.
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